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Abstract. We have studied the effect of the Andreev reflection on transport currents and
persistent currents in a normal-metallic loop connected to two normal metals with two
superconducting mirrors. It consists of two parts, one contributed by electrons and one by
holes. The transport currents are periodic with a period equal to half a flux quantum,φ0/2, in
addition to being periodic with a period equal to a single flux quantum,φ0, in the threading
magnetic flux when the strength of the barriers at the normal-metal–superconductor interfaces
is finite. This result is consistent with earlier experiments. The persistent currents have a period
equal to a flux quantum,φ0, in any case. The absolute values of the hole parts have sharp peaks
at the gap edge and decrease to zero as the barrier strength increases to infinity, but those of the
electronic parts reach a minimum and a constant respectively for these two cases.

1. Introduction

Recently, there have been many experimental [1–7] and theoretical [8–18] studies of
mesoscopic devices with superconducting regions. Most of them focused on normal-metal–
superconductor (NS) junctions and they have helped to revive interest in this area. At low
temperature, quasiparticles cannot tunnel into the superconductor from the metal. In this
case, the transport properties of the system are determined by the tunnelling of electron
pairs, which is known as Andreev reflection [35]. This reflection transforms an electron
on the N side to a Cooper pair on the S side plus a hole reacting with the electron path
on the N side (and vice versa for a hole-to-electron transformation). This process produces
a phase shift proportional to the superconducting phase. The conductivity of a normal
metal connected to two superconductors depends on the superconducting phase difference
established between them. It has been found that the magnetoresistance for rings with two
S boundaries which are not across the paths of the current flow is not just periodic with
the periodφ0 but also periodic with the periodφ0/2 (φ0 is the magnetic flux quantum:
φ0 = h/2e), and the amplitude of the Aharonov–Bohm [21]φ0-oscillations is enhanced by
a factor of more than 100 [2]. The magneto-oscillations in the conductance with period
φ0 have been observed in many experiments, but not those with periodφ0/2 [2, 3, 7, 5].
The periodicity with the periodφ0 indicates that the conductance displays a component in
the superconducting phase difference with period 2π . The oscillations with periodφ0/2
indicate that the conductance has a component with periodπ . The enhancement cannot be
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interpreted to be due to the weak localization consisting in electron coherent backscattering
along a closed diffusion path [3]. Courtoiset al [7] studied the crossover between the
low-temperature Josephson coupling and a phase-sensitive conductance enhancement at
high temperature. This phase-sensitive contribution has a larger amplitude compared to
the weak localization and a different origin. Dimoulaset al [5] also observed that the
conductance is sensitive to the phase difference. In the diffusive transport regime, the
theoretical results [9, 13] on the position and the amplitude of the conductance oscillations
agree with experiments. Beenakkeret al [18] predicted an order-G/G0 (whereG is the
conductance of the junction andG0 = 2e2/h) enhancement of the coherent backscattering
caused by a disordered metal being connected to a superconductor. This enhancement is
greater than the weak-localization correction and provided ballistic point contacts. The
ballistic transport regime has been analysed theoretically [14, 16] and giant conductance
oscillations in mesoscopic Andreev interferometers have been predicted. In reference [14],
the authors suggested that giant conductance peaks are produced when the(2n + 1)π
superconducting phase differences makeN⊥ Andreev levels in line with the Fermi energy,
and they found that the amplitude of the giant oscillations is of the order ofN⊥e2/h� e2/h

(N⊥ is the number of Andreev levels). Hence the results of reference [16] provide another
mechanism by which a normal barrier at the NS interface or a broken crucial sum rule can
produce giant conductance oscillations, leading to the conductance being at its minimum at
zero phase difference and at its maximum atπ phase difference. In this paper, we study
the effect of quantum interference on the transport currents and persistent currents in a
mesoscopic loop connected to two electronic reservoirs with two S mirrors by means of
waveguide theory.

The persistent current can flow in a small metallic loop when it is threaded by a magnetic
flux. This is a manifestation of pure quantum mechanical effects. The existence of persistent
currents in an ordered one-dimensional ring threaded by a magnetic flux was predicted by
Büttiker et al [19] in 1983 and proved by Ĺevy et al [20] in 1990. It is an obvious
demonstration of the Aharonov–Bohm [21] effect. As the dimensions of a conductor are
reduced, the magnitude of the quantum contributions to its transport properties becomes
very sensitive to the size. When it is comparable to or less than the characteristic lengths:
the phase-breaking lengthLφ = (Dτφ)

1/2 and the coherence lengthLT = (hD/kBT )
1/2

(τφ is the sum of the scattering rates at which the phase of an electron is disrupted;D is
the electron diffusion constant), the phase memory of the electron is maintained throughout
such a conductor.Lφ andLT are of the order of 0.1–2µm in metallic thin film at liquid-
helium temperature. Hence, it is possible to fabricate a mesoscopic structure by means of
multilayer lithography with a submicrometre precision of the alignment. The systems used
to research persistent currents have mainly been isolated closed loops. In 1985, Büttiker
[22] studied the persistent currents in an open system which was a small normal-metal loop
coupled to an electron reservoir, and were the first to investigate the effect of that reservoir
on the persistent currents in the loop. Recently, persistent currents in mesoscopic rings have
been studied by many physicists [22–34]. Theoretical studies have variously focused on the
evolution patterns of persistent currents versus the number of channelsM, the elastic mean
free pathLe, the localization lengthξ and the coherence lengthLφ in quasi-one-dimensional
single- and multi-channel metallic rings [22–30]. In experiment, Lévy et al [20] found that
the persistent current of each loop equals 10−2evF /L with a period ofφ0 (vF is the Fermi
velocity, L is the loop’s circumference andφ0 is the elementary magnetic flux quantum)
when the system is working in the diffusion region, by observing the magnetization of
one copper ring with 107 loops. Their results are consistent with theory. In 1993, Mailly
et al [31] found that the persistent current is equal toevF /L in a semiconductor ring of
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GaAs/AlxGa1−xAs when the system is in the ballistic region, which is consistent with the
theoretical predictions.

The structure of our system is more like that of the samples reported on by Petrashov
et al [2] in 1993. Both Al and Pb–Au alloys were used as the superconductors (their
superconducting transition temperaturesTc are 1.3 K and 6.2 K respectively) and Ag as
the ring and leads. The widths of the wires were 90–200 nm, the thickness 50 nm and
the diameter 0.6–1.0µm. At temperatures of 0.002–1.2 K,Lφ ≈ 1–2µm andLT = 0.1–
0.8µm. Hence the phase memory of the electron was maintained throughout this structure.
In other words, the coherence length of the electrons and holes,Lφ , extends over a
distance of the order of the phase-breaking lengthLT when the elastic mean free lengths
le, lh � Lφ,LT . In this case, electron wave packets which carry current in the metal
are coherent superpositions of electron and hole wave functions. The superconducting
phase difference is controlled by an external magnetic field according to1θ = 2πφ/φ0,
whereφ is the magnetic field flux penetrating the ring area andφ0 is the magnetic flux
quantum. In recent work [12], we have studied the persistent currents in a normal-metallic
loop connected to a normal metal and a superconductor. They consist of two parts, one
contributed by electrons and one by holes. The Andreev reflection is a dominant contributing
factor in their production. They are periodic with a period equal to the flux quantumφ0

in the threading magnetic flux and periodic with the periodπ in the length of the lead
linking the loop and the superconductor. They have sharp peaks at the gap edge. The hole
parts decrease to zero when the barrier strength rises to infinity. Also, all of the reservoirs
connected to the loop are independent, so there is no quantum interference. In this paper,
the system that we choose to study has two NS junctions and the Andreev interference will
have an effect on the persistent currents and the transport currents. The magnetic field not
only produces the persistent currents, but also controls the superconducting phase difference.
Because in this paper we are mainly studying whether the oscillation with periodφ0/2 exists,
it is assumed that the loop is one dimensional and that quasiparticles transport in a single
channel. We do not consider impurities, disorder, weak localization and temperature. Hence
the conductance enhancement does not occur because the prerequisite for it is not fulfilled
in the system [9, 13, 18, 14, 16]. However, the periodφ0/2 is independent of the number
of channels [2].
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Figure 1. A one-dimensional normal-metallic loop connected to two normal metals with
two superconducting mirrors. Twoδ-function potentials with strengthZ0 exist at the two
NS interfaces respectively. The structural parameters are chosen to beL3 = L7 = 1 and
L2 = L4 = L6 = L8 = 0.25. The chemical potentials,µ1 andµ2, are chosen to be 1 for an
equilibrium state and the gap1 is chosen to be 0.01.
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2. The theoretical method

Now we consider a one-dimensional metallic loop connected to two electronic reservoirs
with two superconducting mirrors (see figure 1). The two reservoirs are normal metals with
chemical potentialsµ1 andµ2 respectively. There are two NS junctions whereδ-function
potentials with strengthZ0 exist. Whenµ1 is greater thanµ2, a net current flows from the
left N reservoir to the right N reservoir. In the presence of a transport current, a persistent
current probably exists in the loop. We follow the method that we used in our recent work
[12] to calculate the transport currents and the persistent currents. In the local coordinate
system, the wave functions in the circuits L1–L8 shown in figure 1 can be written as

ψ1(x1) =
(

1
0

)
eik+x1 + Re1

(
1
0

)
e−ik+x1 + Rh1

(
0
1

)
eik−x1

ψi(xi) = Aei
(

1
0

)
eik+1 xi + Bei

(
1
0

)
e−ik+2 xi + Ahi

(
0
1

)
e−ik−1 xi

+ Bhi
(

0
1

)
eik−2 xi (i = 2, 4, 6, 8)

ψi(xi) = T ei
(

1
0

)
eik+xi + T ei be

(
1
0

)
e−ik+xi + T ei ae

(
0
1

)
eik−xi + T hi

(
0
1

)
e−ik−xi

+ T hi bh
(

0
1

)
eik−xi + T hi ah

(
1
0

)
e−ik+xi (i = 3, 7)

ψ5(x5) = T e5
(

1
0

)
eik+x5 + T h5

(
0
1

)
e−ik−x5.

(1)

Here we use a two-component scheme to represent electrons and holes. The two
elements are(

1
0

)
and

(
0
1

)
which represent pure electrons and pure holes respectively.Re1 andRh1 are the reflection
coefficients of electrons and holes which are reflected back to the left-hand reservoir.T e5 and
T h5 are the transmission coefficients of electrons and holes which transmit to the right-hand
reservoir. Aei , B

e
i , Ahi andBhi (i = 2, 4, 6 and 8) are the amplitudes of all of the partial

waves in the loop.T ei andT hi (i = 3 and 7) are the amplitudes of waves which transmit to
the up and down leads connected to the loop and S. All of the coefficients are determined
from the continuity of the wave functions and the conservation of the current density at
the four junctions J1, J2, J3 and J4. k+ and k− are the wave vectors of the electrons and
holes in the loop and leads, ¯hk± = √2m(µ1± E) wherem is the electronic mass andE
is the kinetic energy of the incident electrons.k+1,2 andk−1,2 are the equivalent wave vectors
when a magnetic flux penetrates the loop and destroys the time-reversal symmetry [36],
k+1,2 = k+ ± 2πφ/Lφ0 andk−1,2 = k− ∓ 2πφ/Lφ0. ae andbe are the reflection coefficients
of holes and electrons for Andreev reflection when electrons are incident on the NS interface;
ah andbh are those of electrons and holes when holes are incident on the NS interface. We
calculate them using the method which Blonderet al [37] used to study Andreev reflection,
using the expressions

ae ≈ 4u0v0

0
(2)

be ≈ −Z(Z + 2i)(u2
0− v2

0)

0
(3)
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Figure 2. The transport currentIt and persistent currentIc as functions of the magnetic fluxφ
in units of φ0 for Z = 1 andE = 0.991. The solid curves represent the transport current and
the persistent current, the dotted curves represent their electronic parts and the dashed curves
represent their hole parts (the same definitions hold for all of the figures below).

ah ≈ 4u0v0

0
(4)

bh ≈ −Z(Z − 2i)(u2
0− v2

0)

0
(5)

where

0 ≡ 4u2
0+ Z2(u2

0− v2
0) (6)

and Z is the dimensionless barrier strengthZ = 2Z0/h̄vF (vF is the Fermi velocity).
Also u0 and v0 are obtained by solving the Bogoliubov equations,u2

0 = 1 − v2
0 =

(1−√E2−12/E)/2. Here1 is the gap of S. Finally, we obtain a linear twenty-equation
group and its numerical solutions. If the upper and lower arms of the structure are symmetric,
the currents in them are equal when no magnetic field exists and circulating currents due
to an imbalance are not produced. When a magnetic flux penetrates into the loop, the
time-reversal symmetry is destroyed and persistent currents flow in the loop. At this time,
the currents in the upper and lower arms areIup = I0− Ic andIlow = I0+ Ic respectively,
where I0 is the transport current from J1 to J3 in the two arms andIc is the persistent
current. It is easy to obtainIc = (Ilow − Iup)/2. So the two parts of the persistent currents
contributed by the electrons and holes are

I ec =
eh̄k+

8m

∑
i=2,4,6,8

(Aei
∗
Aei − Bei ∗Bei ) (7)
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and

Ihc = −
eh̄k−

8m

∑
i=2,4,6,8

(Ahi
∗
Ahi − Bhi

∗
Bhi ) (8)

respectively. And the sum of the persistent currents is

Ic = I ec + Ihc . (9)

They have nonzero values only if the magnetic field exists. If the upper and lower arms
are not symmetric, the persistent currents cannot be expressed by equations (7), (8) and (9)
because these expressions indicate circulating currents due to the imbalance between the
upper and lower arms. The two parts of the transport currents are

I et =
eh̄k+

2m
T e5
∗
T e5 (10)

and

I ht =
eh̄k+

2m
T h5
∗
T h5 (11)

respectively. And the sum of the transport currents is

It = I et + Iht . (12)
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Figure 3. The transport currentIt and persistent currentIc versus the magnetic fluxφ in units
of φ0 for Z = 1 andE = 1.011.
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Figure 4. The transport currentIt and persistent currentIc versus the magnetic fluxφ in units
of φ0 for Z→∞ andE = 0.991.

3. Results and discussion

In figures 2, 3 and 4, we plot the transport currentsIt and the persistent currentsIc as
functions of the fluxφ. We choose different incident energiesE = 0.991 and 1.011 with
the same barrier strengthZ = 1 in figures 2 and 3. In figure 4, we choose the barrier
strengthZ → ∞ and the incident energyE = 0.991. Oscillations with periodφ0/2 of
the transport currents are shown in addition toφ0-oscillations in figures 2 and 3 but not in
figure 4. The persistent currents in the loop each have the periodφ in these three figures.
From figures 2 and 3, we find that the transport currentsIt and the persistent currentsIc
each consist of two parts for finite barrier strengthsZ. One is contributed by electrons and
the other is contributed by holes. The periodφ0/2 and the hole currents totally originate
from the Andreev reflection. Our results are consistent with those of reference [2] where
the authors found a similarly drastic difference between the magnetoresistance of normal-
metal (Ag) mesoscopic rings with superconducting boundaries (mirrors) and that of plain
rings—the conductivity has periodsφ0/2 andφ0 in the former but onlyφ0 in the latter.
From figures 2 and 3, we find that the amplitude of the oscillations of periodφ0/2 is very
large whenE → 1 and nearly disappears whenE > 1. The reason for this is that the
Andreev reflection is strong whenE → 1 and depressed whenE > 1. The Andreev
reflection is completely depressed whenZ → ∞, so there is no periodφ0/2 and no hole
current in figure 4. We will discuss this in detail in the following paragraph.

We calculate the transport currents and the persistent currents versus the incident energy
and the barrier strength (see figures 5 and 6). From figure 5, we find that they change quickly
whenE is close to1. The absolute values of the hole parts of the currents (not only of
the transport currents but also of the persistent currents) have sharp peaks whenE → 1,
but those of the electronic parts reach minima for that case. From figure 6, we see that the
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Figure 5. The transport currentIt and persistent
currentIc as functions of the incident energyE
in units of1 for Z = 1 andφ = φ0/10.
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Figure 6. The transport currentIt and
persistent currentIc versus the barrier strength
Z for φ = φ0/8 andE = 0.991.

hole parts of the currents decrease to zero but the electronic parts increase to a constant
whenZ → ∞. The Andreev reflection is strongly dependent on the incident energyE

and the barrier strengthZ. The hole currents are produced by the Andreev reflection,
so their values show the strength of the Andreev reflection. From formulae (2)–(5), we
can obtain that|ae|2 = |ah|2 = 1 for E < 1 and |ae|2 = |ah|2 = v2

0/u
2
0 for E > 1, and

|be|2 = |bh|2 = 0 for both cases without barriers (Z = 0); |ae|2 = |ah|2 ≈ 12/4Z2(12−E2)

and |be|2 = |bh|2 ≈ 1− |ae|2 for E < 1, and |ae|2 = |ah|2 ≈ u2
0v

2
0/Z

4(u2
0 − v2

0)
2 and
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|be|2 = |bh|2 ≈ 1− 1/Z2(u2
0 − v2

0) for E > 1 with strong barriers (Z2(u2
0 − v2

0) � 1)
[37]. Therefore we can draw three conclusions. Firstly, the Andreev reflection is suddenly
enhanced and the probability of pair tunnelling increases quickly whenE is close to1.
This can be obtained from formulae (2) and (4). The coefficients of the Andreev reflection,
i.e., ae and ah, have sharp peaks at the gap edge for any finite barrier strength. More
and more holes appear in the loop and leads asE → 1 (see figure 5). WhenE > 1,
the Andreev reflection begins to be depressed. So the amplitude of the oscillation with
periodφ0/2 becomes larger whenE becomes close to the gap edge and nearly disappears
whenE goes beyond the gap edge (see figures 2 and 3). Secondly, whenZ → ∞, the
reflection coefficient derived via the Andreev reflection,ae, equals zero and the reflection
coefficient of electrons,be, equals−1 according to formulae (2) and (3). So all electrons
will be reflected back to the lead with an additional phaseπ when they are incident on the
NS interface from the loop. So no hole arises and transports in the loop and leads in the
whole process. Hence, the two superconducting mirrors seem to be two normal barriers with
infinite strength and the Andreev reflection is completely depressed. Hence also, there is no
oscillation of periodφ0/2 of the transport current (see figure 4) and no hole current (either
hole transport current or hole persistent current) flows in the system (see figures 4 and 6).
Thirdly, the Andreev reflection appears most strongly whenZ = 0. No electron (hole)
will be reflected back to the leads when electrons (holes) are incident on the NS interface.
Correspondingly, one hole (electron) will arise when one electron (hole) is incident on the
NS interface forE < 1 because all particles tunnel to S in the form of Cooper pairs, not
singles. ForE > 1, although a few single particles can tunnel to S, the pair tunnelling is
dominant. So the number of holes is considerable compared with that of electrons. The
electrons and holes transport in circuits continuously and scatter at junctions repeatedly.
The absolute values of the hole transport currents and the hole persistent currents reach
their maxima at the pointZ = 0 and decrease whenZ rises, but those for the electrons
exhibit opposite evolution patterns (see figure 6).

4. Conclusion

We have studied the transport currents and the persistent currents in a normal-metallic loop
connected to two normal metals with two superconducting mirrors. They consist of two
parts, one contributed by electrons and one by holes, and are strongly affected by the
Andreev reflection. We found that an oscillation with a period ofφ0/2 in addition to one
with periodφ0 (φ0 is the flux quantum) in the transport currents exists when the strength
of the barriers at the NS interfaces is finite, but only oscillations with periodφ0 occur
in the persistent currents. This finding is consistent with earlier experiments. The hole
parts and the electronic parts of the transport currents and the persistent currents change
differently as the incident energy and the barrier strength change. The absolute values of
the hole parts have sharp peaks at the gap edge and decrease to zero as the barrier strength
rises to infinity. But the absolute values of electronic parts are at their minima at the gap
edge and increase to constants as the barrier strength rises to infinity. We extended the
study on persistent currents to a system which has two coherent carriers, and our results
are different from others which were derived for cases with no NS interface. The transport
currents have been measured by experiments. We think that the persistent currents could
also be investigated by experiments and that their two parts (electronic and hole) could be
separated by recourse to their different properties. Our method is suitable for studying the
persistent currents because we have used it to obtain the same results for transport currents
as have been obtained in experiments. The Andreev reflection will always occur when
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the NS interface exists. Therefore, most of the conclusions on the effect of the Andreev
reflection on the transport currents and the persistent currents reached in this paper can be
extended to other systems that have NS interfaces.
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